It's been too long since I posted here, right? The action is all happening over on my two podcasts. This site has almost become legacy.
However, I am happy to report that I read an article this morning out of Scientific American that proves one of the basic tenets of A Simple Explanation of Absolutely Everything. Which one? That consciousness is not based in the brain, and most definitely not confined to humans as a by-product of the brain or otherwise.
Scientists have been studying single-celled creatures like slime molds and simple animals like planaria worms and they have come up with a new branch of cognitive studies called basal cognition. That is the notion that consciousness is a first-cause and not a by-product.
I'm going to quote some passages out of the Scientific American article called Brains are not required:
Until recently, most scientists held that true cognition arrived with the first brains half a billion years ago. Without intricate clusters of neurons, behavior was merely a kind of reflex. But Levin and several other researchers believe otherwise. He doesn't deny that brains are awesome, paragons of computational speed and power. But he sees the differences between cell clumps and brains as ones of degree, not kind. In fact, Levin suspects that cognition probably evolved as cells started to collaborate to carry out the incredibly difficult task of building complex organisms and then got souped-up into brains to allow animals to move and think faster.
That position is being embraced by researchers in a variety of disciplines, including roboticists such as Josh Bongard, a frequent Levin collaborator who runs the Morphology, Evolution, and Cognition Laboratory at the University of Vermont. “Brains were one of the most recent inventions of Mother Nature, the thing that came last,” says Bongard, who hopes to build deeply intelligent machines from the bottom up. “It's clear that the body matters, and then somehow you add neural cognition on top. It's the cherry on the sundae. It's not the sundae.”
In recent years interest in basal cognition has exploded as researchers have recognized example after example of surprisingly sophisticated intelligence at work across life's kingdoms, no brain required. For artificial-intelligence scientists such as Bongard, basal cognition offers an escape from the trap of assuming that future intelligences must mimic the brain-centric human model. For medical specialists, there are tantalizing hints of ways to awaken cells' innate powers of healing and regeneration.
And for the philosophically minded, basal cognition casts the world in a sparkling new light. Maybe thinking builds from a simple start. Maybe it is happening all around us, every day, in forms we haven't recognized because we didn't know what to look for. Maybe minds are everywhere.
Plants can sense their surroundings surprisingly well. They know whether they are being shaded by part of themselves or by something else. They can detect the sound of running water (and will grow toward it) and of bees' wings (and will produce nectar in preparation). They know when they are being eaten by bugs and will produce nasty defense chemicals in response. They even know when their neighbors are under attack: when scientists played a recording of munching caterpillars to a cress plant, that was enough for the plant to send a surge of mustard oil into its leaves.
Plants' most remarkable behavior tends to get underappreciated because we see it every day: they seem to know exactly what form they have and plan their future growth based on the sights, sounds and smells around them, making complicated decisions about where future resources and dangers might be located in ways that can't be boiled down to simple formulas. As Paco Calvo, director of the Minimal Intelligence Laboratory at the University of Murcia in Spain and author of Planta Sapiens, puts it, “Plants have to plan ahead to achieve goals, and to do so, they need to integrate vast pools of data. They need to engage with their surroundings adaptively and proactively, and they need to think about the future. They just couldn't afford to do otherwise.”
The orthodox view of memory is that it is stored as a stable network of synaptic connections among neurons in a brain. “That view is clearly cracking,” Levin says. Some of the demolition work has come from the lab of neuroscientist David Glanzman of the University of California, Los Angeles. Glanzman was able to transfer a memory of an electric shock from one sea slug to another by extracting RNA from the brains of shocked slugs and injecting it into the brains of new slugs. The recipients then “remembered” to recoil from the touch that preceded the shock. If RNA can be a medium of memory storage, any cell might have the ability, not just neurons.
Levin's research has always had tangible applications, such as cancer therapy, limb regeneration and wound healing. But over the past few years he's allowed a philosophical current to enter his papers and talks. “It's been sort of a slow rollout,” he confesses. “I've had these ideas for decades, but it wasn't the right time to talk about it.”
That began to change with a celebrated 2019 paper entitled “The Computational Boundary of a Self,” in which he harnessed the results of his experiments to argue that we are all collective intelligences built out of smaller, highly competent problem-solving agents. As Vermont's Bongard told the New York Times, “What we are is intelligent machines made of intelligent machines made of intelligent machines all the way down.”
Levin hopes this vision will help us overcome our struggle to acknowledge minds that come in packages bearing little resemblance to our own, whether they are made of slime or silicon. For Adelaide's Lyon, recognizing that kinship is the real promise of basal cognition. “We think we are the crown of creation,” she says. “But if we start realizing that we have a whole lot more in common with the blades of grass and the bacteria in our stomachs—that we are related at a really, really deep level—it changes the entire paradigm of what it is to be a human being on this planet.”
Indeed, the very act of living is by default a cognitive state, Lyon says. Every cell needs to be constantly evaluating its surroundings, making decisions about what to let in and what to keep out and planning its next steps. Cognition didn't arrive later in evolution. It's what made life possible.
Okay. That's all I'm going to quote here. You can read the entire article by clicking on the embedded link above.
I think I will further elaborate on this concept in a Gnostic Insights podcast very soon, which will also bring in the spiritual implications. Until then, onward and upward!